30 research outputs found

    Design of a novel conduction heating based stress-thermal cycling apparatus for composite materials and its utilization to characterize composite microcrack damage thresholds

    Get PDF
    The objective of this research was to determine the effect of thermal cycling combined with mechanical loading on the development of microcracks in M40J/PMR-II- 50, the second generation aerospace application material. The objective was pursued by finding the critical controlling parameters for microcrack formation from mechanical stress-thermal cycling test. Three different in-plane strains (0%, 0.175~0.350%, and 0.325~0.650%) were applied to the composites by clamping composite specimens (M40J/PMR-II-50, [0,90]s, a unitape cross-ply) on the radial sides of half cylinders having two different radii (78.74mm and 37.96mm). Three different thermal loading experiments, 1) 23oC to âÂÂ196oC to 250oC, 2) 23oC to 250oC, and 3) 23oC to -196oC, were performed as a function of mechanical inplane strain levels, heating rates, and number of thermal cycles. The apparatus generated cracks related to the in-plane stresses (or strains) on plies. The design and analysis concept of the synergistic stress-thermal cycling experiment was simplified to obtain main and interaction factors by applying 2k factorial design from the various factors affecting microcrack density of M40J/PMR-II-50. Observations indicate that the higher temperature portion of the cycle under load causes fiber/matrix interface failure. Subsequent exposure to higher stresses in the cryogenic temperature region results in composite matrix microcracking due to the additional stresses associated with the fiber-matrix thermal expansion mismatch

    Volumetric-mapping-based inverse design of 3D architected materials and mobility control by topology reconstruction

    Full text link
    The recent development of modular origami structures has ushered in a new era for active metamaterials with multiple degrees of freedom (multi-DOF). Notably, no systematic inverse design approach for volumetric modular origami structures has been reported. Moreover, very few topologies of modular origami have been studied for the design of active metamaterials with multi-DOF. Herein, we develop an inverse design method and reconfigurable algorithm for constructing 3D active architected structures - we synthesize modular origami structures that can be volumetrically mapped to a target 3D shape. We can control the reconfigurability by reconstructing the topology of the architected structures. Our inverse design based on volumetric mapping with mobility control by topology reconstruction can be used to construct architected metamaterials with any 3D complex shape that are also transformable with multi-DOF. Our work opens a new path toward 3D reconfigurable structures based on volumetric inverse design. This work is significant for the design of 3D active metamaterials and 3D morphing devices for automotive, aerospace, and biomedical engineering applications.Comment: 36 page

    Honeycomb Structures for High Shear Flexure

    Get PDF
    The present invention provides an improved shear band for use in non-pneumatic tires, pneumatic tires, and other technologies. The improved shear band is uniquely constructed of honeycomb shaped units that can replace the elastomeric continuum materials such as natural or synthetic rubber or polyurethane that are typically used. In particular, honeycomb structures made of high modulus materials such as metals or polycarbonates are used that provide the desired shear strains and shear modulus when subjected to stress. When used in tire construction, improvements in rolling resistance can be obtained because of less mass being deformed and reduced hysteresis provided by these materials. The resulting mass of the shear band is greatly reduced if using low density materials. Higher density materials can be used (such as metals) without increasing mass while utilizing their characteristic low energy loss

    Topologically Variable and Volumetric Morphing of 3D Architected Materials with Shape Locking

    Full text link
    The morphing of 3D structures is suitable for i) future tunable material design for customizing material properties and ii) advanced manufacturing tools for fabricating 3D structures on a 2D plane. However, there is no inverse design method for topologically variable and volumetric morphing or morphing with shape locking, which limits practical engineering applications. In this study, we construct a general inverse design method for 3D architected materials for topologically variable and volumetric morphing, whose shapes are lockable in the morphed states, which can contribute to future tunable materials, design, and advanced manufacturing. Volumetric mapping of bistable unit cells onto any 3D morphing target geometry with kinematic and kinetic modifications can produce flat-foldable and volumetric morphing structures with shape-locking. This study presents a generalized inverse design method for 3D metamaterial morphing that can be used for structural applications with shape locking. Topologically variable morphing enables the manufacture of volumetric structures on a 2D plane, saving tremendous energy and materials compared with conventional 3D printing. Volumetric morphing can significantly expand the design space with tunable physical properties without limiting the selection of base materials

    Mechanical transistors for logic-with-memory computing

    Full text link
    As a potential revolutionary topic in future information processing, mechanical computing has gained tremendous attention for replacing or supplementing conventional electronics vulnerable to power outages, security attacks, and harsh environments. Despite its potential for constructing intelligent matter towards nonclassical computing systems beyond the von Neumann architecture, most works on mechanical computing demonstrated that the ad hoc design of simple logic gates cannot fully realize a universal mechanical processing framework involving interconnected arithmetic logic components and memory. However, such a logic-with-memory computing architecture is critical for complex and persistent state-dependent computations such as sequential logic. Here we propose a mechanical transistor (M-Transistor), abstracting omnipresent temperatures as the input-output mechanical bits, which consists of a metamaterial thermal channel as the gate terminal driving a nonlinear bistable soft actuator to selectively connect the output terminal to two other variable thermal sources. This M-Transistor is an elementary unit to modularly form various combinational and sequential circuits, such as complex logic gates, registers (volatile memory), and long-term memories (non-volatile memory) with much fewer units than the electronic counterparts. Moreover, they can establish a universal processing core comprising an arithmetic circuit and a register in a compact, reprogrammable network involving periodic read, write, memory, and logic operations of the mechanical bits. Our work contributes to realizing a non-electric universal mechanical computing architecture that combines multidisciplinary engineering with structural mechanics, materials science, thermal engineering, physical intelligence, and computational science.Comment: 25 pages, 4 figures, Articl

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Mechanical couplings of 3D lattice materials discovered by micropolar elasticity and geometric symmetry

    Full text link
    Similar to Poisson's effect, mechanical coupling is a directional indirect response by a directional input loading. With the advance in manufacturing techniques of 3D complex geometry, architected materials with unit cells of finite volume rather than a point yield more degrees of freedom and foster exotic mechanical couplings such as axial-shear, axial-rotation, axial-bending, and axial-twisting. However, most structural materials have been built by the ad hoc design of mechanical couplings without theoretical support of elasticity, which does not provide general guidelines for mechanical couplings. Moreover, no comprehensive study of all the mechanical couplings of 3D lattices with symmetry operations has been undertaken. Therefore, we construct the decoupled micropolar elasticity tensor of 3D lattices to identify individual mechanical couplings correlated with the point groups. The decoupled micropolar elasticity tensors, classified with 32 point groups, provide 15 mechanical couplings for 3D lattices. Our findings help provide solid theoretical guidelines for the mechanical couplings of 3D structural materials with potential applications in various areas, including active metamaterials, sensors, actuators, elastic waveguides, and acoustics
    corecore